

QuickField Analysis for Superconductors

James R. Claycomb Department of Mathematics and Physics, Houston Baptist University UH –Texas Center for Superconductivity

QuickField Analysis for Superconductors

- Superconductivity Basics
- Specifying Superconductors in QuickField
- Superconducting Plates
- Hollow Superconducting Shells
 - Inductance Calculations
 - Flux Trapping
- Superconducting Magnetic Levitation
- Nonlinear B-H Characteristics of Superconductors
- Coupled Magnetostatic and Stress Analysis of Superconductors
- Superconducting vs. Permeable Magnetic Shields

Superconductivity Overview

 Superconductivity is a macroscopic quantum phenomenon where superconducting electrons are described by a single wavefunction in the bulk of the superconductor

- Zero electrical resistivity below a critical transition temperature $T_{\rm c.}$
- External magnetic fields are expelled from superconductors (Meissner effect).
- The superconducting state is abolished by sufficiently high magnetic fields and currents.

The Meissner Effect

- London's equations predict that magnetic flux is expelled from the interior of a superconductor except for thin layer.
- The superconductor exhibits perfect diamagnetism.

Modeling Superconductors in QuickField Modules:

- Magnetostatics
- AC Magnetics
- Transient Magnetics

Specifying superconducting regions

- The appropriate boundary condition is zero normal flux density on simply connected superconducting surfaces.
- This condition can be applied implicitly by choosing the relatively permeability of the superconductor to be nearly zero ($\mu_r << 1$).
- For hollow superconductors, the appropriate boundary condition depends on whether the superconductor is field cooled or cooled in zero magnetic field.

Superconducting strip in an external field B-field

 A superconducting strip can be modeled as a single boundary with zero normal magnetic field

Superconducting Sphere in an External B-field

- Modeled using (1) near zero permeability (2) boundary conditions
- Once the field is calculated, the supercurrent density at the surface of the superconductor may be determined by the discontinuity in the tangential component of the field strength H_t

Hollow Superconducting Shells

Field-Cooled (FC) boundary condition: normal B equal zero on the superconductor – flux penetrates the opening of the superconductor

Zero-Field-Cooled (ZFC) boundary condition: zero vector potential specified on the superconductor — flux is expelled from the opening

Superconducting Rings (top view)

Flux Focuser (normal B = 0)

Continuous Ring (FC: normal B = 0) (ZFC: A = 0)

$$\Phi = \iint_{\text{surf}} B \cdot da = \iint_{\Gamma} A \cdot d\ell$$

Calculation of Inductance

▶ The inductance L of a superconductor is calculated from

$$\Phi_{\rm app} = LI$$

Applied Flux

$$\Phi_{\rm app} = \iint_{\rm surf} \mathbf{B} \cdot d\mathbf{a}$$

Total supercurrent

$$\mu_0 I = \prod_{\Gamma} \mathbf{B} \cdot d\ell$$

Type I and Type II Superconductivity

- Type-I superconductors, such as lead, become normal in magnetic fields greater than the thermodynamic critical field h_c which decreases with increasing temperature.
- Type-II superconductors such as Nb₃Sn are characterized by two critical fields h_{c1} and h_{c2} . Flux is expelled from the superconductor below h_{c1} and the sample becomes normal above h_{c2} .

Modeling nonlinear B-H characteristics

Magnetization curves for Type I (----) and Type II (----) superconductors

Modaeling Field Penetration in Superconductors

Flux penetration into a superconductor with a nonlinear B-H curve for

(a)
$$B=0.07 T$$

(b)
$$B=0.2 T$$

(c)
$$B = 0.7 T$$

Layered Superconducting and Permeable Shields

Permeable plate surrounded by two superconducting plates in a transverse B-field

By Jones and Bartlett Learning