

Geophysical and Astrophysical Simulations in QuickField

James R. Claycomb Department of Mathematics and Physics, Houston Baptist University UH –Texas Center for Superconductivity

Geophysical Simulations

- Geomagnetic field
- Magnetotellurics simulation
- Electromagnetic well logging simulation
- Hydrothermal vents

Astrophysical Simulations

- Stress in Europa's ice sheet due to tidal interactions with Jupiter
- Induction of currents in Europa's ocean by Jupiter's B-field
- Thermal conduction in spherical bodies

Modeling the Geomagnetic Field

Parameters	
Radius of Earth	6371 km
Radiusof inner core	1216 km
Thickness of outer	2270 km
core	
Thickness of mantle	2885 km
Thickness of crust	20 km

Jones & Bartlett Learning

Cross section of the Earth showing the solid iron core, surrounding liquid core, mantle and the crust. The earths crust varies in thickness between 10-60 km whereas the equatorial radius of the planet is 6378 km.

Geometry: Axial symmetry – Magnetostatics calculation

Magnetotellurics simulation

Induction of currents in the Earth's crust

Parameters		
Variations in Earth's	1.3 μΤ	
B field		
Period	100 s	
Local crust	1.02	
permeability		

Electromagnetic well logging simulation

Earth Resistivity (Ωm)	
Average	100
Dry earth	10^{3}
Slate	10^{7}
Sand stone	10^{8}
Wet soil	10-100
Sea water	1-5

Jones & Bartlett Learning

Figure E- 6.24: Well logging simulation: excitation and receiver coils are translated through a borehole passing through geological formations with differing conductivity.

Geometry: Axial symmetry

Hydrothermal vents

Parameters	
Chimney length	1 m
Chimney diameter	0.1 m
Basalt temperature	300 – 400 C
Water Temperature	2- 3 C
•	

Image credit Wikimedia commons

Stress in Europa's ice sheet due to tidal interactions with Jupiter

Parameters	
Mass of Jupiter	M = 1.9 E + 27 kg
Mass of Europa	m = 4.8 E + 22 kg
Center-to-center	<i>R</i> = 6.71 E+5 km
separation between	(max 6.77 min 6.65)
Jupiter and Europa	
Radius of Europa	r = 1565 km
Ice thickness	20 km
Young's modulus ice	6 GPa

$$F_z = \frac{2GMmr}{R^3} \cos \theta$$

$$F_r = -\frac{GMmr}{R^3}\sin\theta$$

Induction of currents in Europa's ocean by Jupiter's B-field

Thermal Conduction in Spherical Bodies

Image credit Wikimedia commons

Textbooks by Jones & Bartlett Learning

