QuickField simulation report

Cylinder with temperature dependent conductivity

Determination of the temperature distribution in the cylinder

This automatically generated document consists of several sections, which specify the problem setup and finite element analysis simulation results. Navigation links in the top of each page lead to corresponding sections of this report.

Problem description and QuickField simulation files: https://quickfield.com/advanced/heat2.htm

Problem info

Problem type: Steady-State Heat Transfer Geometry model class: Axisymmetric
Problem database file names:

- Problem: Heat2.pbm
- Geometry: Heat2.mod
- Material Data: Heat2.dht
- Material Data 2 (library): none
- Electric circuit: none

Results taken from other problems:

- none

Problem info Geometry model Labelled Objects Results Nonlinear dependencies
Table 1 . Geometry model statistics

	With Label	Total
Blocks	1	1
Edges	2	4
Vertices	0	4

Number of nodes: 12797.

Labelled objects

There are following labelled objects in the geometry model (Material Data file could contain more labels, but only those labels that assigned to geometric objects are listed)

Blocks:	Edges:	Vertices:
- cond	- $\frac{\mathrm{Ti}}{}$	
-	- $\underline{\mathrm{To}}$	
	-	

Detailed information about each label is listed below.

Labelled objects: block "cond"

There are (1) objects with this label
Thermal conductivity: lambda=nonlinear (see Table 2 in the "Nonlinear dependencies" section)

Labelled objects: edge "Ti"

There are (1) objects with this label
Temperature: $\mathrm{T}=-173.15[\mathrm{~K}]$

Labelled objects: edge "To"

There are (1) objects with this label
Temperature: $\mathrm{T}=-273.15[\mathrm{~K}]$

Problem info Geometry model Labelled Objects Results Nonlineardependencies

Problem info Geometry model Labelled Objects Results Nonlineardependencies

Results

Field lines

Results

Color map of Heat flux $|\mathrm{F}|[\mathrm{W} / \mathrm{m} 2]$

Nonlinear dependencies

Table 2. Thermal conductivity

T [K] lambda [W/K*m]
$0 \quad 50$
$80 \quad 90$

