
QuickField simulation report

Cylindrical magnetic device

Cylindrical magnetic device (actuator) consists of a fixed magnetic part, cylindrical magnetic plunger and electric coil

This automatically generated document consists of several sections, which specify the problem setup and finite element analysis simulation results. Navigation links in the top of each page lead to corresponding sections of this report.

Problem description and QuickField simulation files: https://quickfield.com/advanced/cylindrical_magnetic_device.htm

Problem info

Problem type: Magnetostatics

Geometry model class: Axisymmetric

Problem database file names:

• Problem: *Cylindrical_magnetic_device.pbm*

• Geometry: Cylindrical_magnetic_device.mod

• Material Data: Cylindrical_magnetic_device.dms

• Material Data 2 (library): none

• Electric circuit: none

Results taken from other problems:

none

Geometry model

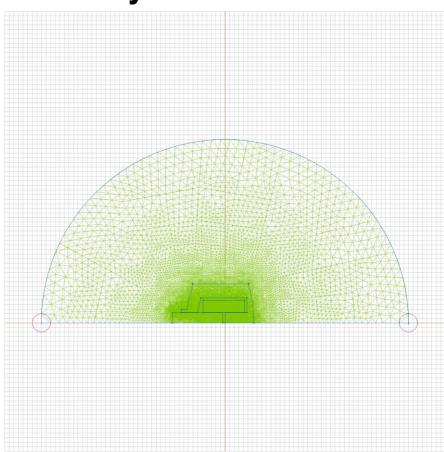


Table 1. Geometry model statistics

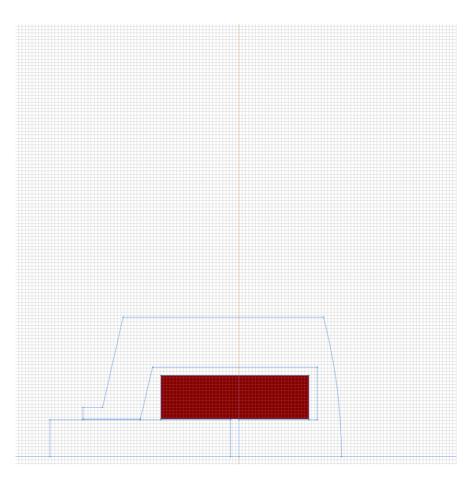
	With Label	Total
Blocks	4	7
Edges	1	32
Vertices	0	26

Number of nodes: 61982.

Labelled objects

There are following labelled objects in the geometry model (Material Data file could contain more labels, but only those labels that assigned to geometric objects are listed)

Blocks:	Edges:	Vertices:
• <u>coil</u>	• <u>zero potential</u>	
• <u>air</u>	•	
• plunger		
• <u>core</u>		
•		

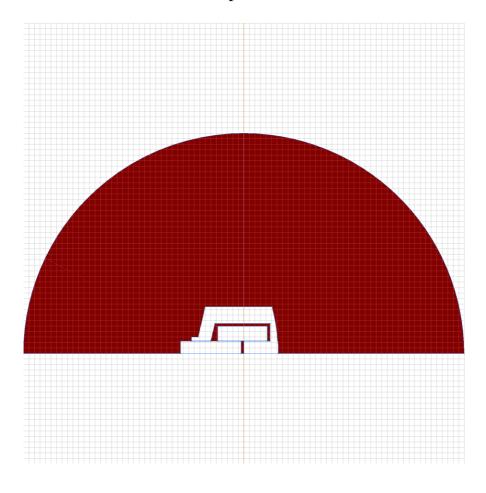

Detailed information about each label is listed below.

Labelled objects: block "coil"

There are (1) objects with this label

Relative magnetic permeability: mu_x=1, mu_y=1

Total current: I=5*1000 [A] Conductor's connection: in series

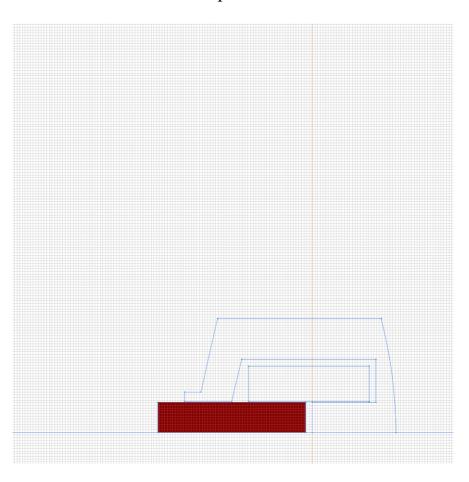

Labelled objects: block "air"

There are (4) objects with this label

Relative magnetic permeability: mu_x=1, mu_y=1

Current density: j=0 [A/m2]

Conductor's connection: in parallel


Labelled objects: block "plunger"
There are (1) objects with this label

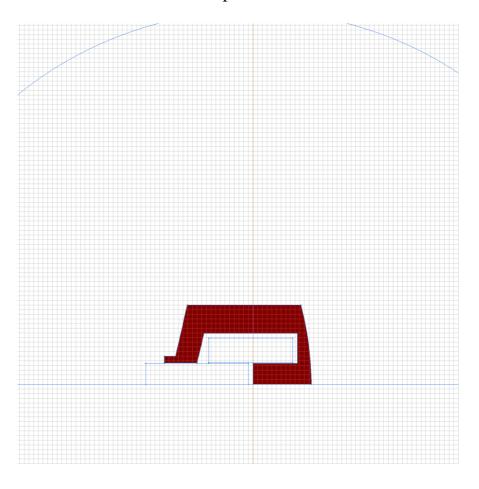
Relative magnetic permeability: mu=nonlinear (see Table 2

in the "Nonlinear dependencies" section)

Current density: j=0 [A/m2]

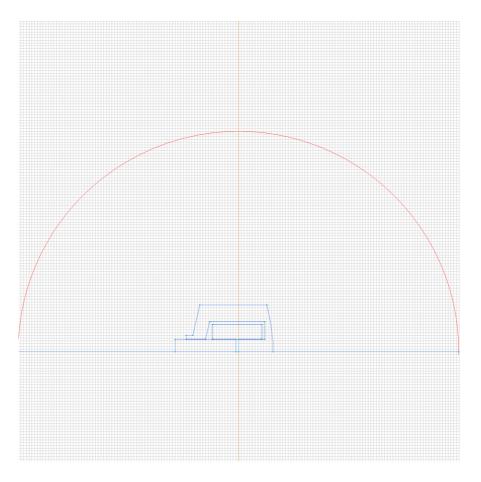
Conductor's connection: in parallel

Labelled objects: block "core"


There are (1) objects with this label

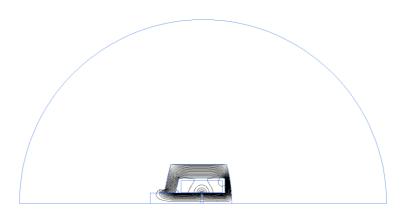
Relative magnetic permeability: mu=nonlinear (see Table 3

in the "Nonlinear dependencies" section)

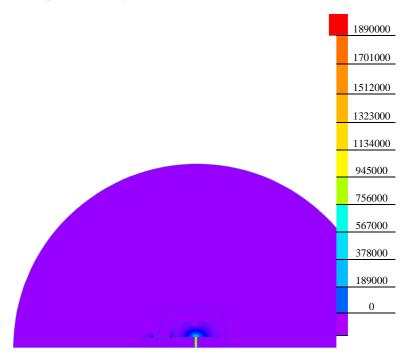

Current density: j=0 [A/m2]

Conductor's connection: in parallel

Labelled objects: edge "zero potential" There are (1) objects with this label


Magnetic potential: A=0 [Wb/m]

<u>Problem info</u> <u>Geometry model</u> <u>Labelled Objects</u> <u>Results</u> <u>Nonlinear dependencies</u>


Results

Field lines

Results

Color map of Strength |H| [A/m]

Nonlinear dependencies

Table 2. BH-curve

B [T]	H[A/m]
0	0
0.9	200
1.2	400
1.3	600
1.36	800
1.4	1000
1.44	1200
1.48	1600
1.5	2000

Table 3. BH-curve

```
B [T] H [A/m]

0 0

0.9 200

1.2 400

1.3 600

1.36 800

1.4 1000

1.44 1200

1.48 1600

1.5 2000
```